
Copyright c©2019 The Institute of Electronics,
Information and Communication Engineers

SCIS 2019 2019 Symposium on
Cryptography and Information Security

Shiga, Japan, Jan. 22 - 25, 2019
The Institute of Electronics,

Information and Communication Engineers

Fault Injection, Simple Power Analysis, and Power Glitch Attacks
against FPGA-implemented Xoroshiro128+

Nakjun Choi∗ Jeeun Lee† Kwangjo Kim∗†

Abstract: Random Number Generators (RNGs) are playing an important role in providing a
uniqueness of many protocols in various fields such as IoT, Artificial Intelligence, Database, and In-
formation Security in ICT systems. However, since most of the RNGs are implemented in a physical
chip, they are always vulnerable to the risk of side channel attack such as timing attack and fault
injection attack, etc. In this paper, we attempt to execute side channel attacks on Xoroshiro128+
which is a Pseudo-Random Number Generator (PRNG) designed by Vigna and Blackman. Using
the Xoroshiro128+ source code, we implemented this PRNG over the Field Programmable Gate Ar-
ray (FPGA). We also verify the security of Xoroshiro128+ and suggest countermeasures against side
channel attacks using ChipWhisperer-Pro

Keywords: Random Number Generator, Side Channel Attack, Xoroshiro128+, ChipWhisperer

1 Introduction

1.1 Motivation

Random Number Generators (RNGs) are playing an
important role in providing a uniqueness of many pro-
tocols in various fields such as IoT, Artificial Intel-
ligence, Database, and Information Security in ICT
systems. It is especially important to develop high-
entropy RNG with security because RNG is essential
in the security industry applying cryptographic tech-
nology. Accordingly, the development of a True Ran-
dom Number Generator (TRNG) [1, 2], which gener-
ates a complete random number using a physical phe-
nomenon, has been actively studied. In recent years,
quantum random number generators (QRNGs) [3, 4]
have also been developed using unpredictable quan-
tum mechanics such as photons traveling through semi
transparent mirrors, nuclear radiation sources, and quan-
tum mechanical noise of electronic circuits.

However, since most of the RNGs are implemented
in a physical chip, they are always vulnerable to the
risk of side channel attack such as timing attack and
fault injection attack, etc. While RNGs have a num-
ber of hardware sources (e.g, electromagnetic waves,
computation time, hardware sound, etc.) that can pro-
vide useful information to an attacker, RNG’s protec-
tion systems have obvious limitations. Therefore, since
RNG can not cope with all types of side channel at-
tacks, researches [5, 6, 7, 8] that have succeeded in ef-
fective side channel attacks against RNGs are being
continuously announced.

∗ Graduate School of Information Security, KAIST. 291,
Daehak-ro, Yuseong-gu, Daejeon, South Korea 34141.
{cnj8160, kkj}@kaist.ac.kr

† School of Computing, KAIST. 291, Daehak-ro, Yuseong-gu,
Daejeon, South Korea 34141. {jeeun.lee, kkj}@kaist.ac.kr

Based on this point, we decided to attempt several
side channel attacks to verify the security of hardware-
based PRNG. In order to proceed our experiment, we
chose xoroshiro128+ [9, 10] as an attack target. xoroshi
ro128+ is a relatively recent version of the xorshift fam-
ily and is a PRNG with high entropy. To ensure that
most randomness tests can be passed, Marsaglia, Vi-
gna and others have developed xorshiro128+ to com-
plement the xorshift. Nevertheless, if hardware-based
xoroshiro128+ loses randomness due to side channel
attacks, this can be an opportunity to remind modern
society of the importance of countermeasures against
side channel attacks.

Since xoroshiro128+ source code [11] is provided by
the author, we implemented the source code on the
FPGA board and then executed various side channel
attacks on the board. One method of attack seems to
be insufficient to obtain useful information from hard-
ware devices. To analyze as many different hardware
sources as possible, we used ChipWhisperer-Pro (CW12
00) [12], an open source embedded security analysis
platform. We measured the power consumption re-
quired to operate xoroshiro128+ with this platform and
executed a power glitch attack [13]. In addition, the
skipping fault attack [14] was executed to check the
expected random number outputs when the attack on
xoroshiro128+ was a success.

In this paper, we describe RNGs and hardware-based
side channel attacks and introduce several attack cases
that have been executed on PRNGs. We also verify the
security of xoroshiro128+ using the FPGA board and
ChipWhisperer-Pro. Afterwards, we give our own eval-
uation of the experiment and suggest countermeasures
to prevent side channel attacks. Finally, we summarize
the results of the study and discuss the importance of a
countermeasures against side channel attacks in RNGs.

1

1.2 Outline of the Paper

Section 2 discusses several side channel attacks and
the attack target of this paper, xoroshiro128+. Section
3 introduces previous work about side channel attack
cases on TRNGs. Sections 4 and 5 describe the ex-
perimental environment and specific attack methods,
respectively. Section 6 evaluates the results of our ex-
periment and Section 7 presents appropriate counter-
measures against our attacks. Finally, Section 8 con-
cludes our study and describes future works.

2 Background

2.1 Random Number Generator

A random number is a randomly selected number
within a defined range. A random number generated
by the RNG should not be able to predict the next
random number; should be free of correlation between
the consecutive two random numbers; should not be
biased toward either. However, in a real computer en-
vironment, it is difficult to obtain complete random
numbers because random numbers are generated in a
deterministic way. Since the random number obtained
by the deterministic method is not a true random num-
ber, it is called a pseudo-random number, and the code
for generating a random number in software is called a
Pseudo-Random Number Generator (PRNG).

True-Random Number Generator (TRNG), one of
the RNGs, generates random numbers by sampling ran-
dom phenomena that can not be predicted using phys-
ical phenomena rather than computer programs. Re-
cently, Quantum-Random Number Generator (QRNG)
has been developed using unpredictable characteristics
of quantum mechanics. Since QRNG shows higher ran-
domness than PRNG, researches related to QRNG are
being studied widely. Quantis RNG [15] and QRNG
Chip of ID Quantique Co., Ltd. of Korea [16, 17] are
known to be the popular QRNG products. Random
numbers generated by RNG are analyzed by random-
ness test such as NIST STS [18], dieharder [19] or bit-
stream to verify randomness.

2.2 Timing Attack

A timing attack uses the method to obtain useful
information by measuring the time required for algo-
rithm operation, and it is the easiest method to exe-
cute among side channel attacks. Timing attacks, first
introduced in [20], are classified as passive and non-
invasive attacks, such as power analysis attacks. Tim-
ing attacks can be attempted in a relatively simple way,
but it is possible to defend against most timing attacks
in a way that deliberately creates a time delay in the
computation process.

2.3 Power Analysis Attack

A power analysis attack first introduced in [21] is
classified as passive and non-invasive attack because it
does not directly damage or modify the attack target.
Power analysis attacks are divided into Simple Power

Analysis (SPA) and Differential Power Analysis (DPA).
SPA is an attack method that obtains useful informa-
tion such as secret key by measuring and analyzing the
power change which is consumed in the operation of
the encryption device. Also, DPA uses a method of
estimating the secret key by comparing the statistical
characteristics of the measured power consumption. In
order to prevent power analysis attack, it is necessary
to use a masking technique which gives randomness to
the power consumed in the operation or hides the in-
termediate value of the full execution.

2.4 Glitch Attack

A glitch attack [13] is an attack on a hardware device
that contains a cryptographic processor, and a smart
card is the primary attack target. Glitch attacks ana-
lyze the circuitry of a hardware device and add unpre-
dictable behavior to the device by adding glitch signals
to external power or clock signals. In the case of a glitch
attack on a smart card, the internal clock of the smart
card may increase, resulting in a fatal result that the
authentication process is bypassed. In order to prevent
glitch attacks, circuitry must be configured irregularly
so that hardware devices are not easily analyzed.

2.5 Xoroshiro128+

xoroshiro128+ [9] is a PRNG intended as a succes-
sor to xorshift [22]. xorshift is a PRNG produced by
Marsaglia in 2003 and it can generate sequences of
232 − 1 integers or 2128 − 1 integers depending on the
type. It takes the next random number by repeatedly
performing xor and Bit-shift operations within the se-
quence. xorshift has been widely used due to its rela-
tively fast speed and simple code configuration, but it
has the disadvantage of not passing some randomness
tests [23]. To solve this problem, Vigna proposed xor-
shift128+ [24], which complemented xorshift in 2017.
xorshift128+ has a maximum period of 2128 − 1 and
shows very fast computation speed. Vigna asserted
that xorshift128+ would pass the BigCrush of TESTU01
[25], which xorshift could not pass. However, Lemire
claimed that xorshift128 + still does not pass the BigCru
sh test [26].

xoroshiro128+ is a recently proposed PRNG among
the xorshift family and is based on xorshift128+. It
was created by Vigna in collaboration with Blackman
and uses shift/rotate-based linear transformations. As
the name suggests, xoroshiro128+ generates a random
number through a single xor, a single shift, and dou-
ble rotate operations, respectively. All researchers can
easily get the xoroshiro128+ code because the designs
have dedicated all copyright and related rights to this
software [11]. We also used the code provided by the
author to proceed with our study. xoroshiro128+ shows
extremely high entropy, but the authors acknowledge
that xoroshiro128+ has a very mild Hamming-weight
dependency making their test fail after 8 TB of out-
put [27]. Therefore, it is necessary to study that can
overcome these problems.

2

Figure 1: The flowchart of the xoroshiro128+ algorithm
that generates 64 random numbers: s[0] and s[1] are
initial seed values; n is the number of random numbers.

xoroshiro128+ generates random numbers using two
initial seeds. To verify the randomness of xoroshiro128+,
we fixed the seed values (s[0] = 0x7340fed833ae3b50,
s[1] = 0xff771d0eace2736b) and generated a total of
64 consecutive random numbers. Fig. 1 shows the
flowchart of the xoroshiro128+ algorithm we used in
our experiment. However, the random number may
be biased if the seed values are insufficient because
xoroshiro128+ generates random numbers in determin-
istic ways using xor, rotate, and shift operations.

3 Previous Work

Since most of the RNGs are implemented in a phys-
ical chip, they are always vulnerable to the risk of side
channel attacks such as timing attack and fault injec-
tion attack, etc. Even if RNG has a protection sys-
tem, there are many types of side channel attacks that
can be executed on the hardware. Therefore, studies
[5, 6, 7, 8] that have successfully attacked RNG were
published. This section introduces several side chan-
nel attack cases that have been executed on TRNG in
recent years.

3.1 Fault Injection Attack on TRNG

In 2009, Markettos et al. announced a frequency
injection attack that is valid for ring oscillator-based
TRNGs [5]. They injected a sinusoidal wave signal into
the power supply of a smart card or a secure microcon-
troller to intentionally modify the operating conditions
of the ring oscillator and obtain a biased output sig-
nal. In order to compare and analyze the reduction
of randomness, Markettos et al. summarized the ran-
domness test results in Table 1 after the sinusoidal wave
signal injection. NIST STS pass rate is about 15% and
dieharder test is about 32%, which shows that the fre-
quency injection attack has been successfully executed.

NIST STS Pass - - Fail

No injection 187 - - 1
Injection 28 - - 160

Dieharder Pass Poor Weak Fail

No injection 86 6 6 9
Injection 28 16 5 58

Table 1: Result of NIST STS and Dieharder test: After
24.04MHz frequency injection into the Smartcard, the
number of NIST STS passes decreased from 187 to 28,
and the number of dieharder passes decreased from 86
to 28.

Figure 2: The result of electromagnetic attack on
TRNG: Each sample is composed of 120 successive 32-
bit frames (black and white squares correspond to 1
and 0, respectively).

3.2 Electromagnetic Active Attack on TRNG

In 2012, Bayon et al. announced an electromagnetic
attack [6] that improves Markettos’s frequency injec-
tion attack [5]. In general, electromagnetic (EM) at-
tacks are non-invasive attacks that analyze the char-
acteristics of EM radiation emitted by cryptographic
devices. However, Bayon et al. demonstrated active
attack that use probe to inject EM into the crypto-
graphic device. This attack also did not require direct
access to the the power pad of attack target.

Fig. 2 shows the output of random numbers of TRNG
as a bit-stream. We can observe the decrease of ran-
domness as the stronger electromagnetic is injected,
and the effectiveness of the attack can be confirmed.
They have also successfully proved that TRNG’s ran-
dom number can be fully controlled through additional
experiments, such as manipulating the bit-stream to
make certain sentences appear.

Since the attacker can easily extract the secret key
information of the encryption algorithm implementa-
tion by taking the exact value of the random number
through these attacks, research for increasing the side
channel attack security of the RNG should be actively
progressed.

3

Figure 3: EM device maps: The white dotted rectan-
gle represents the FPGAs DIE and the solid rectangle
represents the location of the TRNGs

3.3 Electromagnetic Passive Attack on TRNG

Bayon et al. published another paper on the EM at-
tack in 2013 [7]. Unlike previous active attack that was
injected with EM radiation, this paper executed pas-
sive attack that analyzed the EM emanation of cryp-
tographic device. Bayon’s goal was to retrieve as much
information as possible on the self timed ring oscillator-
based TRNG. Therefore, they supposed that the at-
tacker could determine the working frequencies of the
TRNGs and their locations on the chip. Because ring
oscillator frequency depends dynamically on the power
supply voltage and temperature, they measured the
EM emanations and working frequencies by changing
the pwoer supply voltage. Especially, EM emanations
of the device were analyzed point by point using a fre-
quency analysis, and it appeared in the form of a map.
Fig. 3 is the EM device maps provided by Bayon. Be-
fore measuring the EM emanation, they expected EM
emanation to appear in the upper left corner of the
DIE only for a couple of conditions (Power = 1.5V, fre-
quency = [330 MHz - 348 MHz]) and (Power = 1.7V,
frequency = [380 MHz-397 MHz]). Similarly, Fig. 3(a)
and Fig. 3(d) clearly show that they obtained the ex-
pected results. Using this attack, Bayon et al. demon-
strated that it is possible to locate the TRNG on the
chip and to find their corresponding frequencies.

3.4 Glitch Attack on TRNG

In 2015, Martin et al. published a paper on power
and clock glitch attacks on self timed ring oscillator-
based TRNGs [8]. They experimented with increasing
the time to inject power glitch after lowering the base
power of the TRNG from 1.2V to 0.7V for a success-
ful power glitch attack. Fig. 4 shows the variation in
random numbers due to glitch attacks. Fig. 2(a) is
a bit-stream representation of the output of random

Figure 4: The result of glitch attack on TRNG: For case
(a)no power glitch was inserted, for case (b)a power
glitch of length 62.5µs was inserted, and for case (c)a
power glitch of length 187.5µs was inserted.

numbers before an attack is executed, and Fig. 4(b)-
(c) shows the output of random numbers after inject-
ing power glitch signals for 62.5µs and 187.5µs, respec-
tively. We can see that the longer the injection time
of glitch, the less the randomness of TRNG. They also
injected a clock signal of 40MHz instead of a 20MHz
clock signal for clock glitch attacks and demonstrated
that they can have complete control over the output of
random numbers.

4 Our Experimental Setup

Because attacks on hardware devices are affected by
the experimental environment, it is necessary to clearly
specify the experimental environment. Therefore, in
this section, we describe our experimental environment
in detail and specify the values of the parameters. In
addition, we provide a brief description of the attack
scenario.

4.1 Environment

In our experiment, side channel attack was imple-
mented using ChipWhisperer-Pro (CW1200) which is
an open source embedded security analysis platform
that generates FPGA-based pulses to enable a variety
of side channel attacks, including clocks and voltage
fault injection attacks. The xoroshiro128+ used in the
experiment was implemented by uploading the source
code to the CW308T XMEGA target board, one of the
programmable FPGA boards. Fig. 5 shows the Chip-
Whisperer equipment and the FPGA board we actually
used in our experiment. We also used ChipWhisperer
Capture open source software, which is basically pro-
vided by NewAE Technology, to record and analyze
power consumption.

4

Figure 5: ChipWhisperer-Pro (CW1200), CW308 UFO
board and CW308T XMEGA target board

4.2 Attack Scenario

Our final goal is to make xoroshiro128+ lose ran-
domness. Because xoroshiro128+ performs many oper-
ations such as xor, rotate, shift, and so on, it is possible
to have unwanted results if problems occur during op-
eration. We deliberately interrupt the xoroshiro128+’s
operation to output the wrong random number and
compare it to the correct value. However, if the ini-
tial seed value is changed every time, the accuracy of
the random number can not be verified. Therefore, we
set two initial seed values as 0x7340fed833ae3b50 and
0xff771d0eace2736b, respectively.

In order to interrupt the xoroshiro128+’s operation,
it is first necessary to figure out where each operation
is performed. We measured the amount of power con-
sumed during the operation of xoroshiro128+ through
SPA. The power consumption graph can be very useful
to find out where each operation inside xoroshiro128+
is performed.

After that, we executed the fault skipping attack and
found the most likely point to lose randomness. We
also output the expected result of the random num-
ber which can be obtained by successful attack in the
form of bit-stream, and we compare it with the correct
random number. Finally, we executed a power glitch
attack to reduce xoroshiro128+’s randomness.

5 Side channel Attacks on Xoroshiro128+

5.1 Skipping Fault Analysis

Algorithm 1 Xoroshiro128+

1: procedure next()
2: s0← s[0]
3: s1← s[1]
4: result← s0 + s1
5:

6: s1← s0 xor s1
7: s[0]← rotl(s0, 24) xor s1 xor (s1 left-shift 16)
8: s[1]← rotl(s1, 37)
9:

10: return result
11: end procedure

xoroshiro128+ consists of three functions: next(),
jump(), and long jump(). next() is a function that gen-
erates random numbers using xor, rotate, and shift op-
erations on the seed value, and jump() and long jump()

Figure 6: xoroshiro128+ bit-stream from skipping at-
tack: (a)no skipping; (b)rotate and shift operations
skip; (c)the second rotate operation skip; (d)two rotate
and shift operations skip.

are functions that generate random numbers by repeat-
ing the next() function several times. In our experi-
ment, only the next() function was used to generate
random numbers.

The detailed algorithm of the next() function is shown
in the pseudo-code above. As mentioned earlier, the
value of random numbers resulting from a single call
in the next() function is always constant because we
fixed the initial seed values (s[0] = 0x7340fed833ae3b50,
s[1] = 0xff771d0eace2736b). However, because of the
xoroshiro128+ algorithm that uses the previous results
for the next operation, calling the next() function mul-
tiple times causes different random numbers to occur.
We repeated the next() function 64 times to generate
a total of 64 random numbers and expressed them in
bit-stream form to confirm their randomness in Fig.
6(a).

xoroshiro128+ shows relatively sufficient randomness
before being attacked. Before we executed the power
glitch attack, we decided to print out the results of
what would happen if xoroshiro128+ was interrupted
during the computation process. To do this, we have
attempted a skipping attack that skips certain oper-
ating lines in the source code. Fig. 6(b) shows the
random number output when skipping the 7th line of
the pseudo-code. Compared with Fig. 6(a), there is no
significant difference in randomness. This shows that
we can not get the desired outcome even if we hit the
7th line using a power glitch attack.

Fig. 6(c) shows the random number output when
skipping the 8th line of the pseudo-code. At first glance,
it doesn’t seem to make a big difference in random num-
bers, but if we look closely, we can see that the same
arrangement of random numbers is repeated based on

5

Figure 7: The result of SPA attack on xoroshiro128+: (a)800 to 1,400 traces are the points where xor is performed;
(b)1,400 to 6,100 traces are the points where the rotate and shift operations are performed; (c)6,100 to 9,800 traces
are the points where the second rotate operations are performed.

Figure 8: The result of a power glitch attack on xoroshiro128+: (a)no injection (b)a single injection (c)14 injections
(d)15 or more injections

the red line. Seeing a particular pattern in bit-stream
means that PRNG’s randomness has been completely
damaged, so we are expected to achieve a successful
outcome if we attempt an attack on the 8th line of the
pseudo-code.

Fig. 6(d) shows the random number generated by
skipping both 7th and 8th lines. Since only xor opera-
tions are repeated, the same random number is output
each time. To achieve the same result as above, we ex-
ecuted SPA and power glitch attack on xoroshiro128+

5.2 Simple Power Analysis

To inject the power glitch signal into the appropri-
ate time, it is necessary to find the specific time in
which each operation is performed. We executed SPA
on xoroshiro128+ using ChipWhisperer-Pro. Fig. 7
graphically shows the power consumed by xoroshiro128+
when it produces a single random number. Because this
single waveform alone cannot find the point at which a
particular operation is performed, the previously exe-
cuted skipping attack was applied equally.

We measured power waveforms by skipping three

lines of pseudo-code in sequence. After that, we com-
pared the obtained data with each other and located
the point where the specific operation was performed.
In Fig. 7, we found that (a)800 to 1,400 traces on
the graph were the point where xor was performed;
(b)1,400 to 6,100 traces were the point where the rotate
and shift operations were performed; (c)6,100 to 9,800
traces were the point where the second rotate operation
was performed.

Because the rotate operation consists of several shift
operations, Fig. 7(b)-(c) output of power waveforms
are similar. SPA and skipping attack have success-
fully identified the point at which the operation is per-
formed, but this information alone is not sufficient to
reduce xoroshiro128+’s randomness. However, this in-
formation can be useful in executing power glitch at-
tacks.

5.3 Power Glitch Attack

We attempted a power glitch attack based on the
above information in order to break the randomness of
xoroshiro128+. Because of the wide range of measured

6

power waveforms, we needed to determine a specific
point of attack in advance. We found that it was ef-
fective to skip the second rotate operation through the
previous SPA and power glitch attacks. Therefore, we
decided to inject power glitches at 7,500 to 8,000 traces
of the power consumption graph.

The glitch signal used for our experiment was initial-
ized at 10MHz, and the glitch width was initialized at
20% of the period. Also, the glitch offset was initialized
at 10% of the period. Fig. 8(a) is a power consumption
graph before injecting the power glitch signal, and Fig.
8(b) is the result of a single injection of the glitch signal
set as above. Unusual power waveforms were detected
at 7,600 trace, but random numbers were normally out-
put. So we tried to increase the number of glitch signal
injections from 1 to 14 to more actively interfere with
xoroshiro128+.

Fig. 8(c) shows a power consumption waveform after
14 glitch signals were injected, which clearly shows a
larger glitch signal compared to Fig. 8(b). Contrary to
our expectations, however, the random numbers were
still output normally. Fig. 8(d) is a power consumption
waveform that increases the number of repetition to 15
or more. After injecting the glitch signal, no wave-
form at the back was normally detected, which means
xoroshiro128+ stopped working. Too strong glitch sig-
nal was injected so that xoroshiro128+ not only failed
to skip specific operations, but also terminated all of
execution. In this case, we could not gain any random
numbers. Terminating the hardware device is also a
part of the side channel attack, but it is not the out-
come we have expected. We have executed our attack
by moving where the glitch signal was being injected,
but we have not obtained the outcome that some op-
erations have been skipped.

6 Evaluation

In our experiment, the power consumption of xoroshi-
ro128+ was successfully measured using ChipWhisperer-
Pro. The skipping attack also enabled us to determine
where a particular operation was performed. However,
skipping attack assumes that it is possible for an at-
tacker to access and modify the source code of the tar-
get. We could easily check randomness by printing the
results of skipping attack in a bit-stream form.

We initially set a relatively low glitch width and re-
peat counts and conducted the experiment. As a re-
sult, we identified an abnormally terminated operation
of xoroshiro128+ when the glitch width exceeds 20% or
the repeat count exceeds 14. We then set these values
to the maximum glitch signal and injected them into
most of the trace points. The glitch signal was easily
observed in power consumption graph, but the com-
putation of xoroshiro128+ worked normally. It seems
that our power glitch attack on xoroshiro128+ was not
valid. Therefore, further research is needed, such as
further lowering the power at a particular point or ex-
ecuting glitch attacks using clock signals.

7 Countermeasure

7.1 Defending Simple Power Analysis

SPA is an attack method that measures and then
analyzes the power changes consumed during the com-
putation of cryptographic devices. Therefore, if the
cryptographic devices have to handle large amounts of
computation, it can be vulnerable to SPA. However,
intentionally inserting additional computations inside
cryptographic devices can help prevent SPA. In this
case, the difference in power consumption between each
operation is reduced so that cryptographic device can
hide useful information.

7.2 Defending Glitch Attack

Although we did not gain useful information from
the power glitch attack, many hardware devices are still
vulnerable to glitch attacks. Injecting abnormal signals
using clock or power signals will cause unexpected oper-
ation of the hardware device. To prevent this situation,
circuits need to be configured irregularly so that hard-
ware equipment is not easily analyzed. Furthermore,
stopping the operation of a circuit when an abnormal
signal is detected may not expose specific information
to an attacker.

8 Conclusion and Future Work

In this paper, we described RNGs and hardware-
based side channel attacks and introduce several at-
tack cases that have been executed on TRNGs. We
also verified the security of xoroshiro128+ using the
FPGA board and ChipWhisperer-Pro. We executed
a SPA and skipping attack on xoroshiro128+, and we
identified the randomness by expressing random num-
bers in a bit-stream form. Afterwards, we tried to ex-
ecute a power glitch attack to damage the randomness
of xoroshiro128+. Although the randomness was not
reduced as desired, we confirmed that the randomness
of the hardware-based PRNGs is likely to be lowered
by various side channel attacks. Therefore, it is very
important to develop and apply techniques to defend
against various side channel attacks.

As future work, we will attempt not only a power
glitch attack but also a clock glitch attack to disrupt
the operation of xoroshiro128+. We will also conduct a
study utilizing a number of hardware sources (e.g., elec-
tromagnetic waves, computing time, hardware sound,
temperature, etc.) that makes FPGA-based PRNG
vulnerable. In addition, we will expand the targets
of our study to commercialized TRNGs and QRNGs.

Acknowledgement

This work was supported by ID Quantique Ltd. of
Korea (IDQ) (Study on cryptographic strength and
performance of quantum random number generator).

7

References

[1] J. Brown, R. Gao, Z. Ji, J. Chen, J. Wu, J. Zhang,
B. Zhou, Q. Shi, J. Crowford, and W. Zhang,
“A low-power and high-speed true random num-
ber generator using generated rtn,” in 2018 IEEE
Symposium on VLSI Technology, pp. 95–96, IEEE,
2018.

[2] H. Fang, P. Wang, X. Cheng, and K. Zhou, “High
speed true random number generator with a new
structure of coarse-tuning pdl in fpga,” Journal of
Semiconductors, vol. 39, no. 3, p. 035001, 2018.

[3] X. Ma, X. Yuan, Z. Cao, B. Qi, and Z. Zhang,
“Quantum random number generation,” npj
Quantum Information, vol. 2, p. 16021, 2016.

[4] F. Raffaelli, P. Sibson, J. E. Kennard, D. H.
Mahler, M. G. Thompson, and J. C. Matthews,
“A soi integrated quantum random number gen-
erator based on phase fluctuations from a laser
diode,” arXiv preprint arXiv:1804.05046, 2018.

[5] A. T. Markettos and S. W. Moore, “The frequency
injection attack on ring-oscillator-based true ran-
dom number generators,” in Cryptographic Hard-
ware and Embedded Systems-CHES 2009, pp. 317–
331, Springer, 2009.

[6] P. Bayon, L. Bossuet, A. Aubert, V. Fischer,
F. Poucheret, B. Robisson, and P. Maurine, “Con-
tactless electromagnetic active attack on ring os-
cillator based true random number generator,”
in International Workshop on Constructive Side-
Channel Analysis and Secure Design, pp. 151–166,
Springer, 2012.

[7] P. Bayon, L. Bossuet, A. Aubert, and V. Fischer,
“Electromagnetic analysis on ring oscillator-based
true random number generators,” in Circuits and
Systems (ISCAS), 2013 IEEE International Sym-
posium on, pp. 1954–1957, IEEE, 2013.

[8] H. Martin, T. Korak, E. San Millán, and M. Hut-
ter, “Fault attacks on strngs: Impact of glitches,
temperature, and underpowering on randomness,”
IEEE Transactions on information forensics and
security, vol. 10, no. 2, pp. 266–277, 2015.

[9] S. Vigna and D. Blackman, “Xoroshiro,” PRNG
Shootout, 2016, http://xoshiro.di.unimi.it/.

[10] D. Blackman and S. Vigna, “Scrambled lin-
ear pseudorandom number generators,” arXiv
preprint arXiv:1805.01407, 2018.

[11] “Xoroshiro128+.” http://vigna.di.unimi.it/

xorshift/xoroshiro128plus.c.

[12] “Chipwhisperer-pro.” https://wiki.newae.

com/Main_Page,https://newae.com/tools/

chipwhisperer/.

[13] “Glitch attack.” https://www.pcmag.com/

encyclopedia/term/43805/glitch-attack.

[14] A. Barenghi, L. Breveglieri, I. Koren, and D. Nac-
cache, “Fault injection attacks on cryptographic
devices: Theory, practice, and countermeasures,”
Proceedings of the IEEE, vol. 100, no. 11,
pp. 3056–3076, 2012.

[15] “Quantis rng.” https://www.idquantique.

com/random-number-generation/products/

quantis-random-number-generator.

[16] “Sk telecom qrng chip.” https://www.

globalskt.com/home/info/2108.

[17] “Quantis qrng chip.” https://www.

idquantique.com/random-number-generation/

products/quantis-qrng-chip.

[18] “Nist sts.” https://csrc.nist.gov/

publications/detail/sp/800-22/rev-1a/

final.

[19] “dieharder.” https://webhome.phy.duke.edu/

~rgb/General/dieharder.php.

[20] P. C. Kocher, “Timing attacks on implementa-
tions of Diffie-Hellman, RSA, DSS, and other sys-
tems,” in Annual International Cryptology Con-
ference, pp. 104–113, Springer, 1996.

[21] P. Kocher, J. Jaffe, and B. Jun, “Differential
power analysis,” in Annual International Cryptol-
ogy Conference, pp. 388–397, Springer, 1999.

[22] G. Marsaglia et al., “Xorshift rngs,” Journal of
Statistical Software, vol. 8, no. 14, pp. 1–6, 2003.

[23] D. Blackman and S. Vigna, “Scrambled lin-
ear pseudorandom number generators,” arXiv
preprint arXiv:1805.01407, 2018.

[24] S. Vigna, “Further scramblings of marsaglias xor-
shift generators,” Journal of Computational and
Applied Mathematics, vol. 315, pp. 175–181, 2017.

[25] “Testu01.” http://www.bitbabbler.org/

test-data/TestU01.html.

[26] D. Lemire and M. E. ONeill, “Xorshift1024*, xor-
shift1024+, xorshift128+ and xoroshiro128+ fail
statistical tests for linearity,” Journal of Computa-
tional and Applied Mathematics, vol. 350, pp. 139–
142, To appear.

[27] “Testing hamming-weight dependencies.” http:

//prng.di.unimi.it/hwd.php.

8

